If it's not what You are looking for type in the equation solver your own equation and let us solve it.
p(120-4p)=600
We move all terms to the left:
p(120-4p)-(600)=0
We add all the numbers together, and all the variables
p(-4p+120)-600=0
We multiply parentheses
-4p^2+120p-600=0
a = -4; b = 120; c = -600;
Δ = b2-4ac
Δ = 1202-4·(-4)·(-600)
Δ = 4800
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4800}=\sqrt{1600*3}=\sqrt{1600}*\sqrt{3}=40\sqrt{3}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(120)-40\sqrt{3}}{2*-4}=\frac{-120-40\sqrt{3}}{-8} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(120)+40\sqrt{3}}{2*-4}=\frac{-120+40\sqrt{3}}{-8} $
| 4x+5+6x-11=74 | | -8y+5(y+2)=-2 | | e-6=12 | | 13y-8y=5 | | 10/6=15/a | | 2y+2=4(y+3) | | 0.5(3x-5)=5 | | 7/8x+-8=216 | | c=2(3.14)3.5 | | k-3=11 | | 4x^2+20=36 | | 2x−x−5=−18 | | 31/4+x=12 | | x+20-70=-60 | | 6-8a=5a+30 | | 4m+17=1+3m | | 9x+11=-11x-9 | | 82=4x+13 | | 0.5(4x+2)=19 | | -5x+116=-7x132 | | 1/7n=18 | | c=2(3.14)9.1 | | -2x+1=-1x-7 | | 6=1+7/n | | 3x^{3}+7x^{2}=6x | | 3/4/b=192 | | x/0.1=5 | | 3(x+4)-2=x+18 | | 2/3(6x+4)+1x=5x+8 | | 3x^{3}+7x^{2}-6x=0 | | 9(2x+1)=63 | | 2÷3x-7=5 |