If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n=5(2n-3)(9+3n)
We move all terms to the left:
n-(5(2n-3)(9+3n))=0
We add all the numbers together, and all the variables
n-(5(2n-3)(3n+9))=0
We multiply parentheses ..
-(5(+6n^2+18n-9n-27))+n=0
We calculate terms in parentheses: -(5(+6n^2+18n-9n-27)), so:We add all the numbers together, and all the variables
5(+6n^2+18n-9n-27)
We multiply parentheses
30n^2+90n-45n-135
We add all the numbers together, and all the variables
30n^2+45n-135
Back to the equation:
-(30n^2+45n-135)
n-(30n^2+45n-135)=0
We get rid of parentheses
-30n^2+n-45n+135=0
We add all the numbers together, and all the variables
-30n^2-44n+135=0
a = -30; b = -44; c = +135;
Δ = b2-4ac
Δ = -442-4·(-30)·135
Δ = 18136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{18136}=\sqrt{4*4534}=\sqrt{4}*\sqrt{4534}=2\sqrt{4534}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-44)-2\sqrt{4534}}{2*-30}=\frac{44-2\sqrt{4534}}{-60} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-44)+2\sqrt{4534}}{2*-30}=\frac{44+2\sqrt{4534}}{-60} $
| -5+12=16x-4-15x= | | 7(1-y=-3(y-2 | | 8x-2=x-9+7x | | y+10=6y-40 | | (-18)-6x=3x | | -15÷y=-3 | | (2n-3)(9+3n)n=5 | | 3+30x=20x=21 | | -18+22=m-2= | | -1+(-8)=5÷x | | 6x-4=13x-45 | | 27/36=n4 | | -7=-5/9*5+b | | 2(x/2-8)=4x/3 | | -(4x-x)=3/4(x-6) | | (x-3)(x-4)=x*x+4 | | 2(x÷2-8)=4x÷3 | | 5m-6=2m-6 | | 1/5(t-7)=-9 | | 50=2x^2+5x | | 4x^2=19x^2+5 | | 6x-48=8x | | 5x+10+3=13 | | (h−8)2=0(h−8)2=0. | | 9x-15=x+4 | | 70-(j-10)=2(25+j) | | 2/5w+12=22 | | 4x^2+7x+19=0 | | -3(6-k)=-15 | | 2.2+y=12.5 | | 180=5y-y | | 2x(-13)=12 |