If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n=((2/3)(n+5))
We move all terms to the left:
n-(((2/3)(n+5)))=0
Domain of the equation: 3)(n+5)))!=0We add all the numbers together, and all the variables
n∈R
n-(((+2/3)(n+5)))=0
We multiply parentheses ..
-(((+2n^2+2/3*5)))+n=0
We multiply all the terms by the denominator
-(((+2n^2+2+n*3*5)))=0
We calculate terms in parentheses: -(((+2n^2+2+n*3*5))), so:We get rid of parentheses
((+2n^2+2+n*3*5))
We calculate terms in parentheses: +((+2n^2+2+n*3*5)), so:We get rid of parentheses
(+2n^2+2+n*3*5)
We get rid of parentheses
2n^2+n*3*5+2
Wy multiply elements
2n^2+15n*5+2
Wy multiply elements
2n^2+75n+2
Back to the equation:
+(2n^2+75n+2)
2n^2+75n+2
Back to the equation:
-(2n^2+75n+2)
-2n^2-75n-2=0
a = -2; b = -75; c = -2;
Δ = b2-4ac
Δ = -752-4·(-2)·(-2)
Δ = 5609
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-75)-\sqrt{5609}}{2*-2}=\frac{75-\sqrt{5609}}{-4} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-75)+\sqrt{5609}}{2*-2}=\frac{75+\sqrt{5609}}{-4} $
| 180=4x+10+x | | -6+7(x-4)=-83 | | 180=x+3+84 | | 3/4(x-3)-1/2=1/3 | | 5x-7(x+1)=-6x+2(x-7) | | 6u-48=2u+44 | | 7a-6=50 | | 103=4(7+2k)+7k | | -7k+4=14-5k | | 2(3w+6)=3(w-1) | | -90=-3x-3(6-5x) | | 7^3x*7^2=10^x | | 7p+42=10p | | x-(2-x)=2(1-x) | | 49=10^x/7^(3*x) | | -5(3+v)=-30 | | 7w+14=-14-3w | | y-10=38 | | x+3x4=x7 | | 8t-(2t-18)=12 | | 2g=300 | | 6x-8=38-4x | | 6x+9+5x=97 | | 3t+12=11t-52 | | 11y+12=56 | | 6x-9=38-4x | | 1/6x-2=13 | | 18=g+3 | | 7a-12=37 | | n+4/2−3=13 | | 14z-60=17z-78 | | 49=10^x/7^3x |