n2=5020

Simple and best practice solution for n2=5020 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for n2=5020 equation:



n2=5020
We move all terms to the left:
n2-(5020)=0
We add all the numbers together, and all the variables
n^2-5020=0
a = 1; b = 0; c = -5020;
Δ = b2-4ac
Δ = 02-4·1·(-5020)
Δ = 20080
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{20080}=\sqrt{16*1255}=\sqrt{16}*\sqrt{1255}=4\sqrt{1255}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{1255}}{2*1}=\frac{0-4\sqrt{1255}}{2} =-\frac{4\sqrt{1255}}{2} =-2\sqrt{1255} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{1255}}{2*1}=\frac{0+4\sqrt{1255}}{2} =\frac{4\sqrt{1255}}{2} =2\sqrt{1255} $

See similar equations:

| -9y+8=-3+2y | | -24=k÷8 | | 2/3n-9=19 | | r+4=18.9 | | -4r+-4=8 | | n4=n1872 | | m/2+m/7=27  | | 3w=-37 | | 4r+-4=8 | | |3x-4|=|3x-5| | | -4b+-2b=12 | | -4x+2=-7-x | | -9r+8=-12r-19 | | 2+5/4x=10=11/4x | | 5-r+1=2 | | r–3=3 | | n6=69 | | 7=4g—9 | | 78x+859=28402.8393 | | 9x-(5x+9)=15 | | r+8r=29-11 | | 2x+3x+4x=6x+6x-9+13 | | 7y=6(y+18) | | 4/3x+8=4(x-6) | | 49n=710 | | 8+5q=3q-7+5q | | 19/21t=-14.4 | | 2.3 = k/2 | | 33n=113 | | 10000x0.96x=1 | | 6x+9=4x+18 | | 9u-7=8u |

Equations solver categories