If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n2=43
We move all terms to the left:
n2-(43)=0
We add all the numbers together, and all the variables
n^2-43=0
a = 1; b = 0; c = -43;
Δ = b2-4ac
Δ = 02-4·1·(-43)
Δ = 172
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{172}=\sqrt{4*43}=\sqrt{4}*\sqrt{43}=2\sqrt{43}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{43}}{2*1}=\frac{0-2\sqrt{43}}{2} =-\frac{2\sqrt{43}}{2} =-\sqrt{43} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{43}}{2*1}=\frac{0+2\sqrt{43}}{2} =\frac{2\sqrt{43}}{2} =\sqrt{43} $
| x+70-x+30=x÷2 | | 9s−8=–10s | | -5=u/3 | | -14x^2+16x-6=0 | | 8c-2=c^2-2 | | 2(y-2)+3(y-7)=01 | | 2x-18=12-6x | | 3y-4.44=5.13 | | 14k-30=3k-30 | | 7x-18+10x=11 | | x/18+6=7 | | 80/9=y/1113 | | h-256=196 | | q/16=25 | | n-228=81 | | -5(3s-2)=-110 | | 9=r/12+8 | | 2(x–9)=4(3–2x) | | 10c=–10+9c | | m-124=408 | | u/26=30 | | -8=-9+k/14 | | -120=8(5n+5) | | -1=3a+4-8a | | a-1+2a=11 | | -6=2-8n | | 82=4x14 | | N-15=-4n-5(3n+7) | | -8+2p=-6p+6(8p-8) | | 5x−21=5x+17 | | 7·x=142 | | -6.4+x=14.3 |