If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n2=20
We move all terms to the left:
n2-(20)=0
We add all the numbers together, and all the variables
n^2-20=0
a = 1; b = 0; c = -20;
Δ = b2-4ac
Δ = 02-4·1·(-20)
Δ = 80
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{80}=\sqrt{16*5}=\sqrt{16}*\sqrt{5}=4\sqrt{5}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{5}}{2*1}=\frac{0-4\sqrt{5}}{2} =-\frac{4\sqrt{5}}{2} =-2\sqrt{5} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{5}}{2*1}=\frac{0+4\sqrt{5}}{2} =\frac{4\sqrt{5}}{2} =2\sqrt{5} $
| 22x-16=4x+66 | | 4d+5=4d/5-9 | | 13/n7=25 | | x-2+3x=6+5 | | -4=10-2r | | -19x=108 | | 7x+6=321 | | x+10+3x+2x=180 | | 4(×-6)+7x=75 | | 2+x=7/8x+15 | | 2x-5=3x-33 | | 2x+3x+x+x+10=180 | | x+3=(98) | | 3/4(x+7)=10 | | 3x+-5=6x-10 | | x+10+3x+2x+2x=180 | | +5+x/3=-10 | | -x+166=110 | | 3-10n=3 | | 5x+1=1/5x+1 | | 3x+7=½ | | 6x-7+2x+9=50 | | -9(-7+x)=333 | | z/17+-1=8 | | 3u2+150=0 | | 0.5(6+4)=3x+4 | | 6(12-u)=-30u+90 | | x+2÷9-x÷3=10 | | 3a-(a-2)=6 | | 10(2x-5)+8x3=3x | | 5w+6w=-w+5 | | -18=-24u |