If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n2-9n-22=0
We add all the numbers together, and all the variables
n^2-9n-22=0
a = 1; b = -9; c = -22;
Δ = b2-4ac
Δ = -92-4·1·(-22)
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-9)-13}{2*1}=\frac{-4}{2} =-2 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-9)+13}{2*1}=\frac{22}{2} =11 $
| -3-8(6n-7)=389 | | 3(2m-1)=7m+6-m | | 6^x=0.2 | | 2x+16=7x-27 | | 120=8+8(x+6) | | 2/3x-1/4=11/36 | | 2/3x-1/4=11/33 | | x^2-18x+21=-3x | | 3x+x^2=11-3x^2 | | 11/x=15/41 | | 4x2-3=-4+7x | | 5x+2/3=11 | | 8+12x=104 | | X/20+1100/10-x=70 | | 9h-h-h-4h-2h=7 | | 18j+4j-9j+2j-11j=16 | | 64=2+7y | | 18j+4j−9j+2j−11j=16 | | 19q+2q-15q+3q=18 | | 2r+r-2r=8 | | X/20+x/10=1100 | | X/20+x/10=70 | | 2r+r−2r=8 | | (1+3q)(5)= | | 15h-5h=10 | | 9a-8a=8 | | 4s−2s=20 | | r−15.3=−4.2 | | 10(x+5)–15=25 | | g+9=-5g−3 | | x+54+2x+x=278 | | -6t+3=1−7t |