If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n2-7=4n
We move all terms to the left:
n2-7-(4n)=0
We add all the numbers together, and all the variables
n^2-4n-7=0
a = 1; b = -4; c = -7;
Δ = b2-4ac
Δ = -42-4·1·(-7)
Δ = 44
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{44}=\sqrt{4*11}=\sqrt{4}*\sqrt{11}=2\sqrt{11}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-2\sqrt{11}}{2*1}=\frac{4-2\sqrt{11}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+2\sqrt{11}}{2*1}=\frac{4+2\sqrt{11}}{2} $
| -7x+10+4x=15 | | 2x+20=11x | | 7y+11=2y-14 | | 2x-24=4x+6 | | -16t^2+72t=4=0 | | -s+1/3=-4 | | .6+.6x=6.6 | | 1/2(4x+8)=4x+8 | | e+3e+2+55=180 | | 16+5/8x=56 | | 20+0.44x+4=19+1.69x. | | 8v+12+19v=19v+20 | | 27=p−44 | | (2x+10)(2x-5)=129 | | m8=4 | | q+19=39 | | 45(=9+5n) | | 3x-9=-3(x-5) | | 50a-5=95 | | 63x+2=102 | | M1=5x-15 | | 13n+1=27 | | 12x+5=-3x+20 | | H(t)=-16^2+140t+22 | | 8x-13=5x+35 | | 5=7/2(3x+2) | | 3.6p=7.28 | | −x(6x+7)(x2−36)=0 | | -8x+32=-4x | | 2x-4+4x=180 | | 2x+4+4x=189 | | -6x-11=19 |