If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n2+5=54
We move all terms to the left:
n2+5-(54)=0
We add all the numbers together, and all the variables
n^2-49=0
a = 1; b = 0; c = -49;
Δ = b2-4ac
Δ = 02-4·1·(-49)
Δ = 196
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{196}=14$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-14}{2*1}=\frac{-14}{2} =-7 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+14}{2*1}=\frac{14}{2} =7 $
| -7(j–4)=42 | | 26-5x=8× | | 10(t-4)=20 | | (6x+19)+x=190 | | -8-3y=-4y | | 5(n+2)=65 | | 5–6s=47 | | -6s-16s+16s-6s+18s=12 | | x^2+(1/2x)^2=5 | | 31=8(-x+7) | | 20-2m=-12 | | 3x-20+2x-5=180 | | W^2=-2w-12 | | x^2+1/2x^2=5 | | 17.41+.23x=25 | | 2x-7=7-3x | | 15/x+4=7 | | 12=6(-x-9) | | 29p2+91p-214=-4+8p2 | | -7s-8=-9s | | 20x-140=120 | | 29p2+91p-214=-4+8p | | 96-v=273 | | -7j-3=-8j | | -3k-8k-7k+13k-6k=11 | | 5n-5=10/ | | –9=n−26 | | 7z=2z=10 | | 6.8=w-1.2 | | (x/6)+15=20 | | 3(x+5)=18.75 | | 118-x=185 |