If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n2+10n^2+10=91
We move all terms to the left:
n2+10n^2+10-(91)=0
We add all the numbers together, and all the variables
11n^2-81=0
a = 11; b = 0; c = -81;
Δ = b2-4ac
Δ = 02-4·11·(-81)
Δ = 3564
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3564}=\sqrt{324*11}=\sqrt{324}*\sqrt{11}=18\sqrt{11}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-18\sqrt{11}}{2*11}=\frac{0-18\sqrt{11}}{22} =-\frac{18\sqrt{11}}{22} =-\frac{9\sqrt{11}}{11} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+18\sqrt{11}}{2*11}=\frac{0+18\sqrt{11}}{22} =\frac{18\sqrt{11}}{22} =\frac{9\sqrt{11}}{11} $
| X/4+3/5=x/20 | | 215=8x+3.X | | 15x=185 | | 8x-6=4(2x-6) | | -2d/5=4 | | -30x+5=12x+8 | | 215=x(8x+3) | | (4x-1)/2=2x+(9/2) | | 76/9=x | | 7r-3=2(3-r) | | n-9=44 | | 4x-1/2=2x+9/2 | | 8x+1(100)=6x+6*100 | | -16.2=-5.4c | | -7w-19+8w=7 | | 9(x-4)=40 | | -2y-3=17 | | X(x+2)=198 | | -3/5x-7/10+1/2=-56 | | 5x-(-17)=2x+29 | | 13/4x=6 | | 3(5+7x)=30+6 | | 2x+1/5=4/3 | | 25p+30=65p+20 | | 7/4k-1/7=2-5/7k | | x2-3=3 | | 25p+30=60p+20 | | 150-22x=6x-46 | | -0.1+x=23.1 | | 2(x-3)+4=6 | | 12x^2+4x-7=0 | | 4x+1(100)=6x+6*100 |