If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n2+10n-39=0
We add all the numbers together, and all the variables
n^2+10n-39=0
a = 1; b = 10; c = -39;
Δ = b2-4ac
Δ = 102-4·1·(-39)
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-16}{2*1}=\frac{-26}{2} =-13 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+16}{2*1}=\frac{6}{2} =3 $
| 14c-11c=15 | | H(x)=17+×/6 | | 17t-3t-13t+3=11 | | 3j+(-6j)=(-12) | | 196=1/4s | | -2x+0=1.3 | | 5a-4a+2=9 | | p/4-(-3)=6 | | 2.5x-10.5=3 | | 47u^2+21u=0 | | 1y-2y=0 | | 17-5c=-6c | | 8s+6s-4s-5=5 | | 6.6x-10.5=9.3 | | 17−5c=-6c | | 15r=14r+12 | | 4x=240x | | 7u+3u-2u-4u=20 | | 3m+-17m=14 | | 16d-12d=20 | | 72.6=6(m+3.7) | | 3m-3m+3m-m+m=3 | | 103.5=9(m+3.1) | | 2t^2-8t=6 | | 8(m+2.1)=75.2 | | 9^-2p-3/27^-2p=3^4 | | 75.2=8(m+2.1) | | 6p+2=28 | | -1/2=20/3x | | 31=5(b-2 | | 4b^-3b+2=0 | | 1974=21(p+15) |