n2+1/5=2

Simple and best practice solution for n2+1/5=2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for n2+1/5=2 equation:



n2+1/5=2
We move all terms to the left:
n2+1/5-(2)=0
determiningTheFunctionDomain n2-2+1/5=0
We add all the numbers together, and all the variables
n^2-2+1/5=0
We multiply all the terms by the denominator
n^2*5+1-2*5=0
We add all the numbers together, and all the variables
n^2*5-9=0
Wy multiply elements
5n^2-9=0
a = 5; b = 0; c = -9;
Δ = b2-4ac
Δ = 02-4·5·(-9)
Δ = 180
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{180}=\sqrt{36*5}=\sqrt{36}*\sqrt{5}=6\sqrt{5}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{5}}{2*5}=\frac{0-6\sqrt{5}}{10} =-\frac{6\sqrt{5}}{10} =-\frac{3\sqrt{5}}{5} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{5}}{2*5}=\frac{0+6\sqrt{5}}{10} =\frac{6\sqrt{5}}{10} =\frac{3\sqrt{5}}{5} $

See similar equations:

| 5(2y–3)=30 | | z/8+8=-54 | | −7g=9 | | Y=-3x+3.Y=2x-3 | | 9d-7=7d+3 | | 6^-2y=12 | | x2+40=-9 | | x+3/10+4=4 | | Y=-4x+6.Y=-2x+7 | | 9d-7=7d-3 | | z/2+4=49 | | 5x/10-4=-1 | | 11x+-12=5x+-48 | | x+13=31+3x+8 | | 0.04t^2+2t-200=0 | | 5c^2+22c-48=0 | | 3x+9=9x+2 | | (4x+2)(3x-7)=90 | | 9d+8=26 | | 4c^2+c=8 | | 3(2y–1)+5=14 | | x+10+3x+30+5x+50=180 | | -11r+5r=18.r= | | 7y^2+16y=15 | | (4x+2)(3x-7)=100 | | 6(2x-6)=(x+4) | | -3=5(-5)x | | 2x-5=3x-10x= | | 2x+3-10=25 | | 5a^2+3a=20 | | 8a-5=2a+19 | | 8y+7y=15 |

Equations solver categories