n+5n+7=2(2n+1)3n-2

Simple and best practice solution for n+5n+7=2(2n+1)3n-2 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for n+5n+7=2(2n+1)3n-2 equation:



n+5n+7=2(2n+1)3n-2
We move all terms to the left:
n+5n+7-(2(2n+1)3n-2)=0
We add all the numbers together, and all the variables
6n-(2(2n+1)3n-2)+7=0
We calculate terms in parentheses: -(2(2n+1)3n-2), so:
2(2n+1)3n-2
We multiply parentheses
12n^2+6n-2
Back to the equation:
-(12n^2+6n-2)
We get rid of parentheses
-12n^2+6n-6n+2+7=0
We add all the numbers together, and all the variables
-12n^2+9=0
a = -12; b = 0; c = +9;
Δ = b2-4ac
Δ = 02-4·(-12)·9
Δ = 432
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{432}=\sqrt{144*3}=\sqrt{144}*\sqrt{3}=12\sqrt{3}$
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{3}}{2*-12}=\frac{0-12\sqrt{3}}{-24} =-\frac{12\sqrt{3}}{-24} =-\frac{\sqrt{3}}{-2} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{3}}{2*-12}=\frac{0+12\sqrt{3}}{-24} =\frac{12\sqrt{3}}{-24} =\frac{\sqrt{3}}{-2} $

See similar equations:

| -16y+16y-11=2y+17 | | 7+3f+20f=-18+18f | | -16w-19=-18w+17 | | n+2(2n+1)=5n+7+3n-2 | | -8w-34=-2w-10 | | 14-16d=-14d | | -19y=-18y-9 | | -3q-6=-2q+14 | | 7u+35=2u+25 | | 20+10b=11b | | -16+15j=13j+16 | | 6v+18=-10+4v | | 68=1/5(30x+50)+2 | | -6r=-14r-8 | | 7u+10=4u+28 | | 3g=2g+20 | | 5-2(3x-4)=18 | | 8=(t÷-3)+4 | | 8=(t÷3)+4 | | 6(1-3a)=34-4a | | 5x+2=6-7 | | 5n+20=3n+40 | | -11z=3z+14 | | -n+5=5(1-8n) | | 2(x+5)^2-(32)=0 | | 25=7+4q/3 | | 13k+27=12 | | -3(x+14)=2(3x-2) | | 2.4x-14.94=5.7 | | 2x-3+5x+7=74 | | -12w+-12=1(-5w+7) | | 2.2x-4.28=2.1 |

Equations solver categories