n+(n+1)+2((n+2)+(n+3)+55)=3(n+4)

Simple and best practice solution for n+(n+1)+2((n+2)+(n+3)+55)=3(n+4) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for n+(n+1)+2((n+2)+(n+3)+55)=3(n+4) equation:



n+(n+1)+2((n+2)+(n+3)+55)=3(n+4)
We move all terms to the left:
n+(n+1)+2((n+2)+(n+3)+55)-(3(n+4))=0
We get rid of parentheses
n+n+2((n+2)+(n+3)+55)-(3(n+4))+1=0
We calculate terms in parentheses: -(3(n+4)), so:
3(n+4)
We multiply parentheses
3n+12
Back to the equation:
-(3n+12)
We add all the numbers together, and all the variables
2n+2((n+2)+(n+3)+55)-(3n+12)+1=0
We get rid of parentheses
2n+2((n+2)+(n+3)+55)-3n-12+1=0
We add all the numbers together, and all the variables
-1n+2((n+2)+(n+3)+55)-11=0
We move all terms containing n to the left, all other terms to the right
-1n+2((n+2)+(n+3)+55)=11

See similar equations:

| 1.19+2f=7.39 | | c+386=831 | | -2(x-4)+6=-4x-4 | | 300/24=18/x | | d+48=64 | | -1-(-18)=x/11 | | 7.2=2w+1.2 | | b-29=179 | | -9v+36=8(v-4) | | q+57=30 | | (x+3)(x-2)=(x-6)(x+4) | | 13z=793 | | -9g=-99 | | 7m+15/2=70 | | 2(x+1)+6=-2 | | -10(-12x-1)+12=-9(x+1)-6 | | 3(4c-1)-4=9c+2 | | n+30=54 | | X2-3x-550=0 | | 7m-6m-16=1+4m= | | w+1.1=11.3 | | 18=w-3 | | -12x-8=10x-2 | | 2m-9=25 | | x/4+3x/8=5 | | 10t−10=60 | | r+32=896 | | -3/10m=-12 | | x(-2+x)-6=x(x+4)-9 | | -68=r+-84 | | 3x^2-41x+40=0 | | 2x+2+3x+4=x |

Equations solver categories