If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n(n+3)=88
We move all terms to the left:
n(n+3)-(88)=0
We multiply parentheses
n^2+3n-88=0
a = 1; b = 3; c = -88;
Δ = b2-4ac
Δ = 32-4·1·(-88)
Δ = 361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{361}=19$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-19}{2*1}=\frac{-22}{2} =-11 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+19}{2*1}=\frac{16}{2} =8 $
| x3−6x2+11x−6=0 | | 25,000=98,000(1+r)^16 | | -8x-60=-4x-24 | | F(7)=2t+3/7 | | 15=x-31 | | x–15=67 | | -11x8=6x-4 | | -1.5={z}{-0.8} | | 45x12=x | | ^2x-4-10=2 | | ^3x=6 | | ^x+6=4 | | ^x+5=8 | | 11=x/÷-5=8 | | 33-6n=-3(n-4) | | 11=x÷-5=8 | | N-(2x7)=7 | | 12x-44=-4x-4 | | (36+9)-n=1 | | 18t+54=90 | | y–3×±2=0 | | 14x^2-42=37x | | 6s+10=8s-14 | | 1x^2-42=37x | | 4x^2-7=-9 | | 2r+12+r+18=90 | | 3x-2=3(x-3)-2 | | 2|3x-1|-5=-1 | | X/3+y/4=1/12 | | 9a-12=20 | | X/3-y/4=1/12 | | -8(x+8)=32+4x |