n(n+2)=2862

Simple and best practice solution for n(n+2)=2862 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for n(n+2)=2862 equation:


Simplifying
n(n + 2) = 2862

Reorder the terms:
n(2 + n) = 2862
(2 * n + n * n) = 2862
(2n + n2) = 2862

Solving
2n + n2 = 2862

Solving for variable 'n'.

Reorder the terms:
-2862 + 2n + n2 = 2862 + -2862

Combine like terms: 2862 + -2862 = 0
-2862 + 2n + n2 = 0

Begin completing the square.

Move the constant term to the right:

Add '2862' to each side of the equation.
-2862 + 2n + 2862 + n2 = 0 + 2862

Reorder the terms:
-2862 + 2862 + 2n + n2 = 0 + 2862

Combine like terms: -2862 + 2862 = 0
0 + 2n + n2 = 0 + 2862
2n + n2 = 0 + 2862

Combine like terms: 0 + 2862 = 2862
2n + n2 = 2862

The n term is 2n.  Take half its coefficient (1).
Square it (1) and add it to both sides.

Add '1' to each side of the equation.
2n + 1 + n2 = 2862 + 1

Reorder the terms:
1 + 2n + n2 = 2862 + 1

Combine like terms: 2862 + 1 = 2863
1 + 2n + n2 = 2863

Factor a perfect square on the left side:
(n + 1)(n + 1) = 2863

Calculate the square root of the right side: 53.507008887

Break this problem into two subproblems by setting 
(n + 1) equal to 53.507008887 and -53.507008887.

Subproblem 1

n + 1 = 53.507008887 Simplifying n + 1 = 53.507008887 Reorder the terms: 1 + n = 53.507008887 Solving 1 + n = 53.507008887 Solving for variable 'n'. Move all terms containing n to the left, all other terms to the right. Add '-1' to each side of the equation. 1 + -1 + n = 53.507008887 + -1 Combine like terms: 1 + -1 = 0 0 + n = 53.507008887 + -1 n = 53.507008887 + -1 Combine like terms: 53.507008887 + -1 = 52.507008887 n = 52.507008887 Simplifying n = 52.507008887

Subproblem 2

n + 1 = -53.507008887 Simplifying n + 1 = -53.507008887 Reorder the terms: 1 + n = -53.507008887 Solving 1 + n = -53.507008887 Solving for variable 'n'. Move all terms containing n to the left, all other terms to the right. Add '-1' to each side of the equation. 1 + -1 + n = -53.507008887 + -1 Combine like terms: 1 + -1 = 0 0 + n = -53.507008887 + -1 n = -53.507008887 + -1 Combine like terms: -53.507008887 + -1 = -54.507008887 n = -54.507008887 Simplifying n = -54.507008887

Solution

The solution to the problem is based on the solutions from the subproblems. n = {52.507008887, -54.507008887}

See similar equations:

| (-x-3)(2x^2+5x+8)=0 | | -5(5x+4)=4x-2 | | 14x-9=31-6x | | 20x^2+27x-26=0 | | 5x-7=10+8 | | .4+p=.8+.6p | | Cos(x+60)=2sinx | | 3x-5+8x=2x+7 | | -8x-7y=51 | | 6(r-2)-4=-10 | | 7x+2-8x+9=-4 | | 2x^2+14x=5x+18 | | 7x^3(5x^2+3x+1)=0 | | 10c^2-9c+2=0 | | 17x-9=57-5x | | 6y^2-13y+15=0 | | 3k-5=7k-16 | | 4-3m=11 | | 10=4+3f | | X-5=-3x-2 | | 8(4w+2)=-50 | | 180-(3x-30)= | | 2x+5y+z=15 | | 8(4w+2)=-20 | | 20x^3-5x= | | 8x^2+10=-3 | | 5x+8+-3x=-35 | | Ab-2cd=e | | -3x^2+37x-90=0 | | 10x+7=6x+10x | | 2ln(x-4)=ln(x+6)+ln(5) | | 3x-16=5(x-6) |

Equations solver categories