If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n(n+1)=970
We move all terms to the left:
n(n+1)-(970)=0
We multiply parentheses
n^2+n-970=0
a = 1; b = 1; c = -970;
Δ = b2-4ac
Δ = 12-4·1·(-970)
Δ = 3881
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{3881}}{2*1}=\frac{-1-\sqrt{3881}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{3881}}{2*1}=\frac{-1+\sqrt{3881}}{2} $
| 5x-4x=6x+5x | | 2x+15-x+x+5=90 | | 5x-20-x+10-2x=90 | | -2(x+9)=-2 | | 2x+33(3x+20=180 | | 4x-30-2x-10=180 | | -10+x+3x+10+x-5=360 | | -10+x+3x+10+x-5=180 | | -7n+n=6-8n | | t/4+2=-10 | | X+63+x=180 | | Y=5x;(15,3) | | 9(y)+18(y)-12=6(y) | | C=2r3.14 | | 4x-8=134 | | J+3(5-2j)=25 | | -5y+12-2y=-16 | | 3/10=9/40g | | -(-100-40)=x | | 26=-8(g+2)-6g | | -‐5-r=1+2r | | (2x)=1.36 | | 2x(19/5)=0 | | 4x²-24x+20=0 | | k+5(3-k)=11 | | 5(x+3)=x+9 | | 8(p)-16(p)=10 | | 20-x-x-40=180 | | -3/4x=21/8 | | x+11=6x+3 | | X+50-10+x=90 | | a+3a-2-7a=-2-3a |