If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n(n+1)=6480
We move all terms to the left:
n(n+1)-(6480)=0
We multiply parentheses
n^2+n-6480=0
a = 1; b = 1; c = -6480;
Δ = b2-4ac
Δ = 12-4·1·(-6480)
Δ = 25921
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25921}=161$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-161}{2*1}=\frac{-162}{2} =-81 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+161}{2*1}=\frac{160}{2} =80 $
| 5x–3=3+2x | | 28+117+w=180 | | 4(x-9)+9=-3(x-9)+-9 | | -7x+-35=28 | | 8e+9=25 | | 4(x-9)+9=-3(x-9)+9 | | k•5=10 | | X=8x-26 | | 23=4k-33 | | 10(3+e)=70 | | Y=5(x-3) | | -2(9-8x)-(1-x)=2(x-3) | | -6(-4k+4)=2k-9 | | 3^5x=9^3x-1 | | 2(2+8p)=-90 | | 4-2x+7=13 | | 26=3x+2x | | 2x-5(-3x)=-34 | | 5-x2=37 | | 8y-11=5y+4 | | −1/2(x+8)−3=5x−7 | | 7x+6+82+8x2=180 | | 2(n+4)=n+ | | 7x+25=9x+1 | | 90+45+w=180 | | 2y+5=y+23 | | T-104=8x | | 90+61+w=180 | | 0.3x-0,6=0,1x+0,8 | | x=x+5x-10 | | √x=x+5x-10 | | 4/5m-2=10 |