n(n+1)=222

Simple and best practice solution for n(n+1)=222 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for n(n+1)=222 equation:



n(n+1)=222
We move all terms to the left:
n(n+1)-(222)=0
We multiply parentheses
n^2+n-222=0
a = 1; b = 1; c = -222;
Δ = b2-4ac
Δ = 12-4·1·(-222)
Δ = 889
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{889}}{2*1}=\frac{-1-\sqrt{889}}{2} $
$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{889}}{2*1}=\frac{-1+\sqrt{889}}{2} $

See similar equations:

| x²-2x-x=10 | | n^2+n-222=0 | | 11x+7=20÷13x+7=23 | | 5x+2x=7x2 | | n/4+6=26 | | 4x-10=2(x+4 | | 34x-13x= | | (40/100)=(14/x) | | x/8+x/12=30 | | 3x+6-8x=4x-54+3 | | 5(u-8)=-80 | | 6x+15-3x=20+x | | 7w+6=-43 | | X/13(x-6)+6=4x-9 | | 6/7(x+9)=12. | | .4x+9.2=17.128 | | -60=5(w-6) | | v/5-7=-14 | | -38=4-6u | | 14x+7=7(2x-1) | | 9(y-6)=9 | | (2y-7)^2-y+2=0 | | (D⁴-16)y=0 | | X0.5x=25 | | 3⁴^x+¹=3¹¹3 | | 6x-32=9x+87 | | 15y+20+12y+41=90 | | 227=19x-20 | | 3p+16=-(-8-5p)-2(p-4) | | -2(5+6m)+16=-90=-90 | | 3x+45=x-32 | | G(x)=2x2 |

Equations solver categories