If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n(n+1)/2=66795
We move all terms to the left:
n(n+1)/2-(66795)=0
We multiply all the terms by the denominator
n(n+1)-66795*2=0
We add all the numbers together, and all the variables
n(n+1)-133590=0
We multiply parentheses
n^2+n-133590=0
a = 1; b = 1; c = -133590;
Δ = b2-4ac
Δ = 12-4·1·(-133590)
Δ = 534361
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{534361}=731$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-731}{2*1}=\frac{-732}{2} =-366 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+731}{2*1}=\frac{730}{2} =365 $
| 2x+12+4x+12=180 | | 0,3x+1,6=10 | | 4x-(-2x+10)=2 | | t/16+6=7 | | 5y+9=4y-2 | | 2^(3)-4(5-3)^(3)=-8x | | 0.005x=30 | | (x+6)(x+3)=36 | | 20-7x=6x² | | 28=7x-5+2x | | -3a+38=20 | | 5x²+19x+12=0 | | 15-3n=-9 | | 7p-9=110 | | 18x–4=5x+11 | | 77=1/2h(77+7) | | Y+12x=29 | | -4(x—3)=4 | | 5t-(2t-14)=3t-14 | | -1(5y+-1)=-24 | | 8x-7=7x+2=10x=65 | | 3(3y+10)=30 | | k^2-6k=-7k | | 10x=20x-20-2=188 | | 1/2x+22=x | | 4x-5=195 | | 12x+7=113 | | 2(40x)+(50x)=70000 | | -5=6-2x | | 12x=-44-20 | | 0=x/2+17/2 | | 5(x-4)+16=5x+12 |