If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n(n+1)/2=600
We move all terms to the left:
n(n+1)/2-(600)=0
We multiply all the terms by the denominator
n(n+1)-600*2=0
We add all the numbers together, and all the variables
n(n+1)-1200=0
We multiply parentheses
n^2+n-1200=0
a = 1; b = 1; c = -1200;
Δ = b2-4ac
Δ = 12-4·1·(-1200)
Δ = 4801
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{4801}}{2*1}=\frac{-1-\sqrt{4801}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{4801}}{2*1}=\frac{-1+\sqrt{4801}}{2} $
| 3n-5=-5n | | 6-2x=2(15-x | | 100-121k=0 | | 2x15-35=715 | | (7x+15)+(3x+52)=180 | | 2(5-3x)=6(-8x-1) | | 1.7x=-1.5-1.9 | | 6x-43=65 | | x+(408.16-0.286x)+(569.44-0.486x)=1000 | | 7x-12=6, | | 2j-3=j+2 | | 2(4x-5)+10x=3x+32 | | 4x+480=2000+200 | | b-8+b+5=45 | | (8x)=(2x+54) | | (8x)=(2x=54) | | -1+9x=4x2 | | 1/2(2n)=n | | 40x+25=152.50 | | 1/2v11/12-5/4v=-5/12 | | x/21.5=4 | | 27x+11=42-x | | 15x+4=16x-1 | | 0.2x7=2 | | 13/2+3/2(1-2x)=-4 | | 8t-20=-10 | | m/40-7=0 | | 2+6+4x=80 | | x/5-21=14 | | 5x-8=-10+7x | | -5x-5=-77+7x | | -5-2x=-5x+19 |