If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n(n+1)/2=435
We move all terms to the left:
n(n+1)/2-(435)=0
We multiply all the terms by the denominator
n(n+1)-435*2=0
We add all the numbers together, and all the variables
n(n+1)-870=0
We multiply parentheses
n^2+n-870=0
a = 1; b = 1; c = -870;
Δ = b2-4ac
Δ = 12-4·1·(-870)
Δ = 3481
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3481}=59$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-59}{2*1}=\frac{-60}{2} =-30 $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+59}{2*1}=\frac{58}{2} =29 $
| n(n+1)/2=420 | | n-1=-4n+14 | | 2(8y-7)+y=5y | | x+2x=8760 | | 1+4p=7-2p | | 42.4x^2-9=0 | | 2(3x-1)-(5x+2)-4=2x | | 7b+13=3b+25 | | 1-8n-8=7n-6n-12 | | 8.9x=2/5 | | 2(5x-3)=2(3x+1) | | 8.9/x=2/5 | | 2x+3(x-10)=50 | | 38x^2+5x-6=0 | | x+12=-5x+30 | | 0.54=-0.36m | | 2x-10-28=0 | | 193=(1/2)b(23) | | 1/4m-5/3=3/4-m | | 3(x+8)-12=2x+3(x+1) | | 48x=126 | | 0.2/x=-0.2 | | -62/18x-11/6=-11/6 | | 4+2y=4-3y+5y | | -16x+2/3-10/6x-5/2=-11/6 | | 2/3(-8/3x+1)-21/2(2/3x+1)=-15/6 | | x^+3x-72=4x | | {4×-3y=5 | | 6z+5(-2-7)=-1 | | y=4y-18 | | 88=-2m-4(2m-7) | | (3/8)x+(3/2)=(7/2)+(5/8)x |