If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n(n+1)+4=45
We move all terms to the left:
n(n+1)+4-(45)=0
We add all the numbers together, and all the variables
n(n+1)-41=0
We multiply parentheses
n^2+n-41=0
a = 1; b = 1; c = -41;
Δ = b2-4ac
Δ = 12-4·1·(-41)
Δ = 165
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{165}}{2*1}=\frac{-1-\sqrt{165}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{165}}{2*1}=\frac{-1+\sqrt{165}}{2} $
| 17.50+3.50d=125+3.50d | | 4.61+4s=36.49 | | 8v-40=v+37 | | -5(1-5x)+5(-8x-2)=4x+8x | | 60/90=2n | | 2(m+8)-9=5 | | 1/4(5x=16/3) | | 12+30x=198 | | 3x+6=7x+10+2x | | 98/70=7/b | | -7x2x-4=-56 | | 6+2=-4(3x-2) | | 4(x+2)+30=40 | | 1-72x=4 | | 8x+21=8x+10 | | -7=p/9 | | 3a-4=a+4 | | -7|2x-4=-56 | | x/9=9/12 | | -4x+-2=9x-15 | | 1x+5x-6=12 | | -1=x/5+3 | | -3=2n+9 | | 6+2=-5(3x-2) | | x/15−8=−7 | | 2(4b-6)=4 | | 2n−17=3 | | -4(4p+2)-18=3(3p+8) | | 2n-4=5+n | | 10x-14=24x | | 4x+12(x−3)=28 | | x(-3)=15 |