If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n(1440n-2880)=360
We move all terms to the left:
n(1440n-2880)-(360)=0
We multiply parentheses
1440n^2-2880n-360=0
a = 1440; b = -2880; c = -360;
Δ = b2-4ac
Δ = -28802-4·1440·(-360)
Δ = 10368000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{10368000}=\sqrt{2073600*5}=\sqrt{2073600}*\sqrt{5}=1440\sqrt{5}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-2880)-1440\sqrt{5}}{2*1440}=\frac{2880-1440\sqrt{5}}{2880} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-2880)+1440\sqrt{5}}{2*1440}=\frac{2880+1440\sqrt{5}}{2880} $
| n(1440-2880)=360 | | 7n-13=8n-14 | | 216/36=x/15 | | 2x-4+6=14 | | 5p+6=15+4p | | 9(3-z)/8=-2 | | 0.06(y-2)+0.14y=0.04y-0.6 | | 5x^2-+10=15x | | f/8-20=-26 | | 2x+2(x-2)=5x+11 | | g/3+11=29 | | 3(x-5)+3x=4 | | -4x+6x-9=2(x-2)-36 | | 0.20x+0.45(50)=32.5 | | 5w-18=12w= | | .06x+.11(x+9000)=1330 | | 6+x+5=3+3x-2 | | 1/3x-17=24 | | 2(x+3)+2x=4 | | -2+2y=6.5 | | 33x+10=70x+42 | | y(6y+1)=12 | | 5.75=2p-5.25 | | 38=2u+2(u+3) | | 38=2u+3(u+3) | | -4=2y+3(y-8) | | 7v+7(v+2)=-14 | | 5x-6+14=20 | | -8x-3x=8-7x | | x-0.2=160 | | 6(6x-4)+5(10-3x)-4(5x+5)=-2 | | 2x+26+6x-10=90 |