If it's not what You are looking for type in the equation solver your own equation and let us solve it.
m2=64
We move all terms to the left:
m2-(64)=0
We add all the numbers together, and all the variables
m^2-64=0
a = 1; b = 0; c = -64;
Δ = b2-4ac
Δ = 02-4·1·(-64)
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16}{2*1}=\frac{-16}{2} =-8 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16}{2*1}=\frac{16}{2} =8 $
| ((x+x+x)6)/5=68 | | 8a-12=72 | | 2a–6a-12=72 | | 1/5x=6/25 | | -3m+3-19=14 | | w+6/3=-1 | | 7x+6x-4x-5=13 | | 3(-m+1)–19=14 | | 12x-10=11+9× | | -8+x=8x-6x | | 1+2x=7x+11 | | 35m+0.75=6.25 | | 4x-35=x+50 | | r+7+1=5 | | 3=5u-2 | | 4=-8+3u | | 8m-2m=-18 | | x+18/7=2 | | 9x-(5x+9)=7x-30 | | 6x-10=4(x+3) | | -42=y/5 | | 5÷h+6=2 | | 5x=50-15x | | (x-8)^4/12=40 | | 2x+162=10 | | 8x+45=45 | | 3/4(2x-5)+3/2=2/8(7-3x) | | 6x2+x-1=0 | | (7x-5)^2=26 | | 5x=19x-7 | | -6x=8-2x | | M^2-3m+5.M=-3 |