m2=23

Simple and best practice solution for m2=23 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for m2=23 equation:



m2=23
We move all terms to the left:
m2-(23)=0
We add all the numbers together, and all the variables
m^2-23=0
a = 1; b = 0; c = -23;
Δ = b2-4ac
Δ = 02-4·1·(-23)
Δ = 92
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{92}=\sqrt{4*23}=\sqrt{4}*\sqrt{23}=2\sqrt{23}$
$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{23}}{2*1}=\frac{0-2\sqrt{23}}{2} =-\frac{2\sqrt{23}}{2} =-\sqrt{23} $
$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{23}}{2*1}=\frac{0+2\sqrt{23}}{2} =\frac{2\sqrt{23}}{2} =\sqrt{23} $

See similar equations:

| 6x+4÷2x=5 | | 11x-16=20–x | | (121)*r=(81)*10 | | 5x-16=20+x | | 3(5x-2)=12x+15 | | (121)*r=(81)*r | | 4m | | 4m | | q²+12q-28=0 | | -2(y+6)=8y-8+2(2y+7) | | (3x+12)=(8x-33) | | 14-x=2x(13-5)-3 | | z²-85=12z | | -2(5u-1)+8u=4+4(4u-2) | | 0.5x-(6+3)=-3 | | x+39+60=180 | | x2+14/5=27 | | 6(x+4)=-5(3x-3)+6x | | X²+7x=8 | | (8x-14)+(7x+2)=180 | | N+16=19n=2 | | 10x=90(x-4) | | 3y=3,5 | | -5x-4=-4x+3 | | -8=x+-11/2 | | 11+3c=8 | | w/2-1=3 | | 43=7y-20 | | -4+2a=-8 | | 6p-9=p² | | (3b+9)+(16b-4)=180 | | d/2+5=-3 |

Equations solver categories