If it's not what You are looking for type in the equation solver your own equation and let us solve it.
m2-4m=140
We move all terms to the left:
m2-4m-(140)=0
We add all the numbers together, and all the variables
m^2-4m-140=0
a = 1; b = -4; c = -140;
Δ = b2-4ac
Δ = -42-4·1·(-140)
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-4)-24}{2*1}=\frac{-20}{2} =-10 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-4)+24}{2*1}=\frac{28}{2} =14 $
| -99=-9(h-83) | | -9(f-98)=81 | | 1=6k-43 | | -9(f-98)=82 | | 3v^-7v=6 | | k-36/6=7 | | 4y=7.2 | | 3a+14=38 | | 9(h-5)+8=17 | | 12h+7=-29 | | 8f+3=31 | | f-25=12 | | 5r+-3=51 | | 9x=4.3 | | 3(r+2)=5(r-2) | | x+(2x+12)=174- | | 9x1=4x-9 | | x+42=65 | | 3t+2=3-4t | | (6x-7)*2=4 | | 7/c+7=6/2-6 | | u-63/4=5 | | w/8+7=10 | | 4x^2+1=-6 | | 4(t^2-2t)=3t^2-16 | | 43=19-4b | | -8a-2=12+a | | (−y+1)^2=9 | | -28=-5z+2 | | 1=k/5-3 | | (−y+1)2=9 | | -23=4-3r |