If it's not what You are looking for type in the equation solver your own equation and let us solve it.
m2+m-28=0
We add all the numbers together, and all the variables
m^2+m-28=0
a = 1; b = 1; c = -28;
Δ = b2-4ac
Δ = 12-4·1·(-28)
Δ = 113
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(1)-\sqrt{113}}{2*1}=\frac{-1-\sqrt{113}}{2} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(1)+\sqrt{113}}{2*1}=\frac{-1+\sqrt{113}}{2} $
| 15x^2+63=114x | | -6k=-15-3k | | 2(2n+1)-4(2n+1)=0 | | -3x+(2x)=7 | | 3xx-5=2(x-2) | | (n/5)+0.6=2 | | 4n=6×14 | | 3x+(2x)=7 | | 21n^2-42=49n | | 0=16t^2-48t-60 | | 12b+1237.234=16b-347.5 | | 15-45=5(x-2)-5 | | 3(a-7)+a=9 | | 6(3x-4)=3(2x+8) | | (g/3)-0.9=-0.4 | | 3x=4.8(x-6) | | 12x+10x=-14 | | 7x+10=x2 | | 4(2x+10)=6(x+5) | | x/3+x/4-x/5=-2 | | 5d-1/2=2/3 | | 8x-5+5x-10=-54 | | 2(4x-1)=6(x-5) | | 2x+1=4(2x+1 | | R(x)=-0.4x^2+360x | | 0=-16t^2+48t+60 | | 15x^2+19x-56=0 | | 3w+5=2w-5 | | 13x=7x+3x+3x | | 〖3x〗^2-4x-10=0 | | 7(3x+5)=4(5x-2) | | 5/8k=-32 |