If it's not what You are looking for type in the equation solver your own equation and let us solve it.
m2+6m-31=0
We add all the numbers together, and all the variables
m^2+6m-31=0
a = 1; b = 6; c = -31;
Δ = b2-4ac
Δ = 62-4·1·(-31)
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-4\sqrt{10}}{2*1}=\frac{-6-4\sqrt{10}}{2} $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+4\sqrt{10}}{2*1}=\frac{-6+4\sqrt{10}}{2} $
| 1.8x-15=0.3+21 | | 200m-100m+53.075=55.275-175m | | d7+5=13 | | 5.4g+6=2.4g+12 | | 9r+7=16 | | -10x+10(-10x-6)=-6(10x-1)-5 | | 10+2(5x-1)=9-7(7x-2) | | (0.58*x)+x=600 | | 17c+15=15 | | -10x-1/2(-6x+10)=7(10x+3)+1 | | -10x-1/2(-6x+10)=7(10x+3) | | 3(-x+2)-9=-10x+7x-4 | | Y=3x^2-18x+2 | | 5(h-1)+2=3(h-1)+2 | | (4a-2)/7=10 | | (u)/(-4+)+-10=-7 | | 6g=174 | | 113+67+23+x=360 | | -4+4k=6 | | 12/z=5/4 | | w-2.59=7.2 | | 5x+3x-2=8x-2 | | x^2-21-22=0 | | n=n+1*2 | | n=n+12 | | n=n*1+2 | | 111+28+x=180 | | 10(3x-3)=15(20-3x-3) | | 7y-1.3=16.2 | | 9x-23=(6x+1)x2 | | 2(2x-26)=x+25 | | 4=1.8x |