If it's not what You are looking for type in the equation solver your own equation and let us solve it.
m2+4m-5=0
We add all the numbers together, and all the variables
m^2+4m-5=0
a = 1; b = 4; c = -5;
Δ = b2-4ac
Δ = 42-4·1·(-5)
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-6}{2*1}=\frac{-10}{2} =-5 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+6}{2*1}=\frac{2}{2} =1 $
| 6x-6-2=10 | | 1-2n+3=-5 | | Y=2-3x-2 | | -8+35k=37 | | 5x+1.9=180 | | 9+3(4)=y | | 5(3q-10)=-5(-1q+3) | | -5(k-3)=-25 | | (4x)1/4=16 | | -4=3/8k+8 | | 3/x+5+x/x-5=1 | | 4.05p+14.40=4.5(p+3 | | -12=24x+36 | | 3^n=36 | | b-4/3b=-1/3 | | n-2/3=2 | | -3-15=-6x+24 | | w2–12w=36 | | 22x+16=16 | | 4x-15.2x=16 | | s2–25=-25 | | 3(4c−5)+c=50 | | X=8/(x+2) | | -7(x+4)^2=-28 | | 4(4w+1)=2(8w+2) | | -7(x-4)^2=-28 | | 4x+42=3x+38 | | 0=9x^2-12x+29 | | 3y-5-5=16 | | 58-u=248 | | p^2+6p-55=0 | | 10w^2-1w-3=0 |