m2+3=51

Simple and best practice solution for m2+3=51 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for m2+3=51 equation:



m2+3=51
We move all terms to the left:
m2+3-(51)=0
We add all the numbers together, and all the variables
m^2-48=0
a = 1; b = 0; c = -48;
Δ = b2-4ac
Δ = 02-4·1·(-48)
Δ = 192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{192}=\sqrt{64*3}=\sqrt{64}*\sqrt{3}=8\sqrt{3}$
$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{3}}{2*1}=\frac{0-8\sqrt{3}}{2} =-\frac{8\sqrt{3}}{2} =-4\sqrt{3} $
$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{3}}{2*1}=\frac{0+8\sqrt{3}}{2} =\frac{8\sqrt{3}}{2} =4\sqrt{3} $

See similar equations:

| 1/8y-1=-1 | | 6(3m-1)=1/2(18m-12) | | -4=10+r/5 | | 4(2t+3)=2(4t+6) | | -10+2u=10+8u-2u | | -10+2u=10+8u | | 5g-7=1/3(15g-9) | | 18+8j=(-20)-11j-19 | | -5/8k=125 | | -5-9d=3-8d | | 8-3(2-6x)=-2(-12x+11) | | 24t+15=27 | | 6(7x-3)=-5(6x+4) | | 5x+4=2x=-11 | | 85°=−1+16x | | 5(z-5)=30 | | -3v-8=-v | | 4(x-3=-20 | | 9–7x=5–3x | | 30-2y=25 | | 3(-3x+1)=-2(4x-7) | | 21=-2x-7+9x | | (v+2)=7 | | (5x+180)/6=3x/4 | | 2-6(x+3)=7 | | 2.70=0.4/x | | 2x-(x+3)=7 | | 9+t2=10 | | 9y-6-6y=6 | | 12y-15=7 | | 10-x-4x=-7+6x-13-x | | 5x+180/6=3x/4 |

Equations solver categories