If it's not what You are looking for type in the equation solver your own equation and let us solve it.
m2+23m+22=0
We add all the numbers together, and all the variables
m^2+23m+22=0
a = 1; b = 23; c = +22;
Δ = b2-4ac
Δ = 232-4·1·22
Δ = 441
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{441}=21$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(23)-21}{2*1}=\frac{-44}{2} =-22 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(23)+21}{2*1}=\frac{-2}{2} =-1 $
| -4b=5=3b+9 | | 2,886=39(p+35) | | 1.2+1.2y=-3.6 | | -0.56(b+8)=-2.8 | | 4.4=1.1x+22 | | x+9/25=1/2 | | 6t16t-1/6=9 | | -7(x+2)=5x-3+2(3x+2) | | 5x+2x+6x-8+3x+13=180 | | 5x-8=4(x+2) | | 2324x=989812 | | 2(u-6)=-3u+28 | | 2x+68+10x+16=180 | | 6(-7+5y)9y=0 | | /2(−6m−3)=6(5m−1) | | 2x+68=10x+16 | | 4q^+8q=4q+8 | | 28=y/4+16 | | 3x+5.5=14.2 | | p^2+40=14p^2 | | -1/2p+(-4)=14 | | 9.4x=22.08 | | 3(n+2)=9(6-2) | | n^2+9=-11 | | 6.2x+14.1=20.92 | | -8.1+0.4x=5 | | 3q-5-5q-2=0 | | 3(6-x)=-4x-2 | | -8.1+0.4x=0 | | y-14=38 | | −.5(4n+2)=19 | | 3(6-x)=-4-2 |