If it's not what You are looking for type in the equation solver your own equation and let us solve it.
m(m-1)=12
We move all terms to the left:
m(m-1)-(12)=0
We multiply parentheses
m^2-1m-12=0
a = 1; b = -1; c = -12;
Δ = b2-4ac
Δ = -12-4·1·(-12)
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$m_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-1)-7}{2*1}=\frac{-6}{2} =-3 $$m_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-1)+7}{2*1}=\frac{8}{2} =4 $
| ‐9 = 6m + 15 | | 7=5,000x+45,000 | | 9x2−3=111 | | 5x+1/9+1/3=2 | | 4^(+3)+2^(x+2)2=192 | | -49-x=31 | | 5x+1/2+1/3=2 | | 2/3(x+3)=2/3(x-6)= | | (x^2−1)^2+(x^3−x)^2=0 | | 9x+25=80 | | 3x+(1)/(4)=2x-(1)/(5) | | 12x^2+1=19 | | -4.9t²+12t+4.5=0 | | 100x^2+2=27 | | 9x^2+7=151 | | 7x^2+8+3=5x^2+2(x^2+4x+3)-3 | | 100x^2-10=71 | | 100x-10=71 | | X^4—9x^2+81=0 | | i=5+5i | | (x2−1)2+(x2−2)2+(x2−3)2=5 | | (x2−1)^2+(x3−x)^2=0 | | 3(5-x)+2x-7=x-2(x+1) | | (x2−1)2+(x3−x)2=0 | | a/8=6.1 | | 8f-40=16 | | 3x-7=17x= | | 360=(10x+1)+(9x-11) | | 360=(4x+6)+(11x-6) | | 2/3(9m-6)=30 | | -8(-1+4p)+7p=-25-8p | | X+0.5x+x-5=100 |