If it's not what You are looking for type in the equation solver your own equation and let us solve it.
Simplifying log(2x + -7) + -1log(x + -1) = log(x + -1) Reorder the terms: glo(-7 + 2x) + -1log(x + -1) = log(x + -1) (-7 * glo + 2x * glo) + -1log(x + -1) = log(x + -1) (-7glo + 2glox) + -1log(x + -1) = log(x + -1) Reorder the terms: -7glo + 2glox + -1glo(-1 + x) = log(x + -1) -7glo + 2glox + (-1 * -1glo + x * -1glo) = log(x + -1) -7glo + 2glox + (1glo + -1glox) = log(x + -1) Reorder the terms: -7glo + 1glo + 2glox + -1glox = log(x + -1) Combine like terms: -7glo + 1glo = -6glo -6glo + 2glox + -1glox = log(x + -1) Combine like terms: 2glox + -1glox = 1glox -6glo + 1glox = log(x + -1) Reorder the terms: -6glo + 1glox = glo(-1 + x) -6glo + 1glox = (-1 * glo + x * glo) -6glo + 1glox = (-1glo + glox) Solving -6glo + 1glox = -1glo + glox Solving for variable 'g'. Move all terms containing g to the left, all other terms to the right. Add 'glo' to each side of the equation. -6glo + glo + 1glox = -1glo + glo + glox Combine like terms: -6glo + glo = -5glo -5glo + 1glox = -1glo + glo + glox Combine like terms: -1glo + glo = 0 -5glo + 1glox = 0 + glox -5glo + 1glox = glox Add '-1glox' to each side of the equation. -5glo + 1glox + -1glox = glox + -1glox Combine like terms: 1glox + -1glox = 0 -5glo + 0 = glox + -1glox -5glo = glox + -1glox Combine like terms: glox + -1glox = 0 -5glo = 0 Divide each side by '-5'. glo = 0 Simplifying glo = 0 The solution to this equation could not be determined.
| 7/2*4/7 | | (7-14x)/(3x-15) | | 3/2,500 | | X+7x=2 | | 1-6xover-4+8=-3 | | 6x+13=0.2 | | x(X-4)=17 | | 125-5x= | | X=-1+9x | | (3x^2+8xy-2y^2)dx+(4x^2-4y^2-3g^2)dy=0 | | 9x-X=1 | | 9x/3-X=3 | | 15=8x^2+14x | | 12cos^2x-5sinx-10=0 | | 13/12=ln(e^(5/6)) | | 2(x-3)-3x= | | x-.24x=1.2 | | ln(x)=5/6 | | a+2(2-a)=14 | | 2m-(m-3)= | | x-0.18x=5.5 | | 5x+4-6x+2=4x-5x-3 | | 2x-12=-x-33 | | x-0.28x=1.1 | | 6x-(-5x^2)+(-3x^2)-(-4x)= | | 3.14*(14*14)= | | -5x^3+20=15 | | 8/0= | | (x-5)squared=36 | | 8x^3-12x-67=0 | | 8x^3+12x-6=0 | | -x+17=-5x-3 |