If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k2=56
We move all terms to the left:
k2-(56)=0
We add all the numbers together, and all the variables
k^2-56=0
a = 1; b = 0; c = -56;
Δ = b2-4ac
Δ = 02-4·1·(-56)
Δ = 224
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{224}=\sqrt{16*14}=\sqrt{16}*\sqrt{14}=4\sqrt{14}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{14}}{2*1}=\frac{0-4\sqrt{14}}{2} =-\frac{4\sqrt{14}}{2} =-2\sqrt{14} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{14}}{2*1}=\frac{0+4\sqrt{14}}{2} =\frac{4\sqrt{14}}{2} =2\sqrt{14} $
| .b+503=1612 | | 5(x-9)-9=2x+3(x+7) | | 5.7=8x+8.9 | | .m+68=132 | | -4+y-8=-4+y-8 | | 2x-89=47 | | .5(x-9)=2-1.25(x+8) | | 5=x/14 | | 729=a+578 | | 8/x=12/180 | | 0.5(x-16)+1.2x=2+1.5x | | 2(12-w)=-2(w-17-10) | | 13b=156 | | 1.2+x/3=8.7 | | 17c=731 | | 2(12-w)=-2(w=17)-10 | | -1.2=x/3=-8.7 | | 8y-10=-8+9y | | -17=r/2 | | -20=x/19 | | 22=4(y+7)-6y | | 34+n=5(3n+4) | | -26=5(u-2)-7u | | 16=k+12 | | -4/5(15x-20)-8x=4/5(5x-10) | | 2(t+1)=102,t= | | 8x+5+7x-5+75=180 | | −12=−4(x−7) | | 6x-7=3x*5 | | 4(0.5n-3)=n-025(12-8n) | | -16=v-3 | | 5(r+4)^2+1=626 |