If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k2=44
We move all terms to the left:
k2-(44)=0
We add all the numbers together, and all the variables
k^2-44=0
a = 1; b = 0; c = -44;
Δ = b2-4ac
Δ = 02-4·1·(-44)
Δ = 176
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{176}=\sqrt{16*11}=\sqrt{16}*\sqrt{11}=4\sqrt{11}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{11}}{2*1}=\frac{0-4\sqrt{11}}{2} =-\frac{4\sqrt{11}}{2} =-2\sqrt{11} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{11}}{2*1}=\frac{0+4\sqrt{11}}{2} =\frac{4\sqrt{11}}{2} =2\sqrt{11} $
| y–4=11,y= | | 5(c−18)−9=7 | | 6x-10-2x=7=23 | | 19v=-323 | | -4h+1=17 | | -0.75x-2=0.25x3 | | 2(x+2)-x=2(x-1)+9 | | -4v-5v=18 | | 10+5n=-2(-2-5n) | | n−4=3n+6* | | 5x+3x+50=2100 | | 3|5x-3|-4=17 | | –9h+6=–10h | | -8m=9m+59 | | 5a+-6=3a-6 | | 300-d/40=140 | | 6+x+2x-37=3x-31 | | -13=-13a | | (1+(x)/(12))^(5)=243 | | -0.75—2=0.25x+3 | | u/2+-9=-13 | | b÷11=87 | | -10+7t=8+10t | | y=1.4(116)+5.14 | | 96=-6x-2x+1 | | 15x+3x+50=2100 | | 8=3a-44 | | (w+2)=(w-4) | | 9+x+3=8x-2 | | -10s=-10-8s | | (2)3x-6=4x+18 | | 20/5-2x=8 |