If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k2-7k=-6
We move all terms to the left:
k2-7k-(-6)=0
We add all the numbers together, and all the variables
k^2-7k+6=0
a = 1; b = -7; c = +6;
Δ = b2-4ac
Δ = -72-4·1·6
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-7)-5}{2*1}=\frac{2}{2} =1 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-7)+5}{2*1}=\frac{12}{2} =6 $
| n/9+2=1 | | 30h=12+3 | | 3/7=22/5/x | | 2(x-5)(2x+1)=0 | | 5+6x=33+2x | | k.3/10=3/4 | | −18= −9n | | 2.1(2.3+1.2x)=11.65+x | | x.x+3.8=4 | | -9(-3+2z)=81 | | k-1,2=1,8 | | 900+r²=r²+36r+324 | | 7x–9=16 | | 85=x+4 | | 4x^2+32x=-48 | | 4y+5=17-2 | | 6x+2x-10=38 | | m+66=180 | | (x+7)+(2x+40)=90 | | 11-m=51 | | 6(1=3x)=-18-6x | | m+120=180 | | x-95=-10 | | 6.1+0.3=c+1 | | x^2+2x=7900 | | -4x+12=2x-6 | | 9/10+g=5 | | x-(-8)=31 | | x+0,4=0,6 | | -3/5x+4=-11 | | 12+2a=26 | | k/16+3/43/8=k3 |