If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k2-12k+35=0
We add all the numbers together, and all the variables
k^2-12k+35=0
a = 1; b = -12; c = +35;
Δ = b2-4ac
Δ = -122-4·1·35
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-2}{2*1}=\frac{10}{2} =5 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+2}{2*1}=\frac{14}{2} =7 $
| (7n+15)1/3-4=0 | | -2r+1=10-r | | 6x+20+4x-5=180 | | 5a+3=2a-24 | | (x+2)^2=-12 | | 90+12m=306 | | 1/317+2/3(2+9)=x | | x1/3-4=0 | | 3(3-x)+9=2(×-4)+6 | | |4y-9|-5=2 | | 1/3(2+15)+2/3(2+9)=x | | 9+4x=-12x | | 30n-180=270 | | 48=16t^2+80t | | -2-5a=-22 | | 8w=3200 | | 3(4x+9)3/2-3=40 | | 1/3(2+15)=x | | 4=(-1+x/2 | | -12-5x=13+14x | | Y=16x^2+30x+4 | | -9=a-16 | | -3r-3=12 | | 4n-8=4(3n+2) | | 45=-3(1-4k) | | (-7/5)(2)=x | | 5x-15=4+9x | | 3^2x=12.8 | | (2x+10)2/3+4=20 | | -4x+9=18x+2 | | 30.16=17.59+5x | | (3)(2)/5-4=x |