If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k2+9k=0
We add all the numbers together, and all the variables
k^2+9k=0
a = 1; b = 9; c = 0;
Δ = b2-4ac
Δ = 92-4·1·0
Δ = 81
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{81}=9$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(9)-9}{2*1}=\frac{-18}{2} =-9 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(9)+9}{2*1}=\frac{0}{2} =0 $
| 5x-x+6•3=30 | | 24/x=6/2 | | 16^x-4=9^-10x | | 8x-2x=4•3 | | 5x(3x-5)=17 | | -7u+3(u+7)=17 | | 4+2(x-3)=7(2x-1)+5 | | 3+6=2y | | 5(2x-9)-4=5(x-2)-14 | | 4(2x-5)-2=4(x-2)-6 | | 9-9=6x+5x | | 16=4=5y | | m-5m=-6-6m | | 7x-(6x+8)=4x-50 | | 25=8(4+5x) | | 3x-6=5x+8= | | 17^x-6=11^-9x | | 1/2(3x+2)*5=50 | | 2x+19+5x-41=180 | | (3x+1)/x-5=0 | | 6(y+2=3(y+2) | | 5y-4=13y+12 | | 20=10(5+x) | | 1/2*3x+2*5=50 | | 20=10(50-10x) | | p+(1/3)p=2/3 | | 6x-3=4x+25 | | a/5-3=11 | | 3(2x-5)=5(x-2) | | 3(2-x)=5(1-x) | | 5x+4=3(x+3)+2 | | (7x+10)+(2x+1)=180 |