If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k2+9=20
We move all terms to the left:
k2+9-(20)=0
We add all the numbers together, and all the variables
k^2-11=0
a = 1; b = 0; c = -11;
Δ = b2-4ac
Δ = 02-4·1·(-11)
Δ = 44
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{44}=\sqrt{4*11}=\sqrt{4}*\sqrt{11}=2\sqrt{11}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{11}}{2*1}=\frac{0-2\sqrt{11}}{2} =-\frac{2\sqrt{11}}{2} =-\sqrt{11} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{11}}{2*1}=\frac{0+2\sqrt{11}}{2} =\frac{2\sqrt{11}}{2} =\sqrt{11} $
| 24x-3=6(4x+3) | | 1.2x=200 | | 7(v-6)=91 | | 52k=-156 | | 81x2+324=0 | | m+85=50 | | 12=3h−6 | | -3(x+7)=-6x+21 | | 47+(12x+6)=(20x-11) | | e/4=2 | | 4(3x–1)=5x+66 | | -4z=-12-6z | | 3x+5+2x+40=180 | | 4(3x+5)=12-5 | | 9+2d=-2+d | | 3(y+4)–(y–2)=-7 | | -3j-3=-10j-3 | | (2^3x+^1)=52 | | 14x+44=-30 | | s^2-2s+3=0 | | 9x+15=5x-45 | | 9x+-15=6x+15 | | 86=8-6(1+2x) | | 6+y=24+2y | | -3(1-7x)=-108 | | –9+r=46. | | 3.2x^2=5.12x | | 3x/2=3.5 | | |x–3|=0 | | 13x+4+12x+11=180 | | 20-4x=-63 | | 38+3,412x-89=69(50x+75) |