If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k2+8k=84
We move all terms to the left:
k2+8k-(84)=0
We add all the numbers together, and all the variables
k^2+8k-84=0
a = 1; b = 8; c = -84;
Δ = b2-4ac
Δ = 82-4·1·(-84)
Δ = 400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{400}=20$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(8)-20}{2*1}=\frac{-28}{2} =-14 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(8)+20}{2*1}=\frac{12}{2} =6 $
| x+2/3=90 | | 17=(9x+5)-5x | | 900-35x=180+25x | | 49=(11-9.8)t | | 39=x/4+14 | | 3(4x-2)-23=8x+3 | | 4y+32=5y-10 | | -8.84+1.1x=2.5-1.7 | | 5/x-8=62 | | -2.8+(b-1.7)=0.6(9.4) | | 2(3t-9)-6=18 | | m^2-20m+25=0 | | 4-2x=-4x+20 | | 6(x+3)+4=6x+2 | | 9(c)=5(10)-160 | | 6-8b=-5b-2(b+1) | | -8(2+7p)=-16-5p | | 1/3(y+7)=3(y-1) | | 1+1/2x=-5/4+1/8x | | 9(10)=5f-160 | | 6+9c-20=-5 | | -8(-7p-7)=-40+8p | | 4x^2-5x-1319=0 | | 2x-3=9x-8x | | (x+4)(x-7-5)(x+7-5)=0 | | 5(x−7)=40 | | -7(x+8)=7 | | -9=x/3+5 | | 5(2x-3)=6(2x-4)+2 | | 9x–2= | | 8x=-336 | | 9x–2=43 |