If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k2+7k=0
We add all the numbers together, and all the variables
k^2+7k=0
a = 1; b = 7; c = 0;
Δ = b2-4ac
Δ = 72-4·1·0
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(7)-7}{2*1}=\frac{-14}{2} =-7 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(7)+7}{2*1}=\frac{0}{2} =0 $
| 16x+5=6x-45 | | x-7=(.75)2.80 | | 2y+3y=14+6 | | -27=-3w+27 | | 5x-8x=3x+32 | | 11w-12=10w | | Х-6x+8=0 | | -6h-13=-14h+11h+20 | | Х²-6x+8=0 | | -22+2x=37+6+x | | 6x+14=-49+3x | | 4x+10+5×-13=180 | | 14+9m=-20+7m | | 12x-1+26=23x-8 | | 2(13)+13=5y-23 | | -(6x)-18=72 | | -5x=-30+6 | | 4(2r+5=6 | | (0,1-x)(0,1-x)=0 | | -2(2t+2=-8 | | 3+5r=−4 | | x/5=x/615 | | m^2+4m-87=9 | | 3x+4/6=5x-3/3 | | 6x+12=x+37 | | 31x-6=18+7x | | x/5x/6=15 | | -(7-4x)+18=8x-5 | | -36-x=-20-5x | | 4(-3x-9)-7(x-7)=51 | | 5(2x+8)=-32+34 | | 4{x-2}+2x=40 |