If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k2+4k-60=0
We add all the numbers together, and all the variables
k^2+4k-60=0
a = 1; b = 4; c = -60;
Δ = b2-4ac
Δ = 42-4·1·(-60)
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-16}{2*1}=\frac{-20}{2} =-10 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+16}{2*1}=\frac{12}{2} =6 $
| 5+3r=5r+-19 | | 15w-14=14w-9 | | 9p-69=3p+63 | | (9p-69)+(3p+63)=180 | | U+20=2u | | 2s-100=s-42 | | 3(2z-3)=6z-(3z-11)-2 | | 39+4x=5(−x+2)−25 | | b-35=2b-84 | | 3x²-21x-24=0 | | x-2/15=40 | | 5a-54=6a-68 | | 5a-54=a | | 5r-(6+r)=2r+2(r+8) | | 7m+11+m=99 | | 5^x+2=343 | | 6a-68=a | | 6x+5=52+x | | 3x(4x-2)=2(6x-3) | | 6x+5=(52+x) | | y=-15=10y-375 | | 9s=8s+3 | | 5y-18=-83 | | 6(x-10)=36 | | 3x+2=42+2(x+5) | | X2=5(3x-10) | | 3x+16=x-2 | | (5x-95)+(3x-53)=180 | | 13x-1=9x+13 | | 6(x+10)=36 | | (9y-58)+(7y+14)=180 | | 117=-w+288 |