If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k2+4k-5=0
We add all the numbers together, and all the variables
k^2+4k-5=0
a = 1; b = 4; c = -5;
Δ = b2-4ac
Δ = 42-4·1·(-5)
Δ = 36
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{36}=6$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-6}{2*1}=\frac{-10}{2} =-5 $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+6}{2*1}=\frac{2}{2} =1 $
| H(t)=t^2+19t+14 | | 2y-7=5y-1 | | x-3(-4.5)=3 | | 2(x+5)+20=100 | | 2a-15=3a-6 | | -8(2r8)-8r=(3+2r) | | 3a2+3a+1=0 | | 3^2+3x-5=13 | | 1x+16=4x-11 | | 2x+2=x+11, | | x−67+8=−1 | | -42.5=3y-31.7 | | s/3+4=2 | | a/4+20=45 | | x−85−2=4 | | 2=3x+2/3+1/5x=2/3x | | 3^-2b=1/243 | | 90+8x-9+10x=180 | | 7x−(−10+5x)+17=43 | | x²+18x=0 | | 4/5x-9=6 | | 4y-2y-5=7 | | 2x−3/5=−7 | | 3k-8=7k+4 | | 2p+68=9p-100 | | 3-(2x+5)=15+4x | | 2x−35=−7 | | (-2p)-38=40 | | 30=4d–18 | | -6+x=−3 | | 7x-3x-8=0 | | 2x+45=8 |