k2+4k+1=0

Simple and best practice solution for k2+4k+1=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for k2+4k+1=0 equation:



k2+4k+1=0
We add all the numbers together, and all the variables
k^2+4k+1=0
a = 1; b = 4; c = +1;
Δ = b2-4ac
Δ = 42-4·1·1
Δ = 12
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{12}=\sqrt{4*3}=\sqrt{4}*\sqrt{3}=2\sqrt{3}$
$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{3}}{2*1}=\frac{-4-2\sqrt{3}}{2} $
$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{3}}{2*1}=\frac{-4+2\sqrt{3}}{2} $

See similar equations:

| 50-3v=-54+3v-10 | | 5x-3(2x-1)=2 | | x+12+x=18 | | -5-4/5c=4 | | -7s-3s=-80 | | 1.5x+7=11 | | 4x-3=3x+2* | | 3.4=-0.85(m+3) | | a2+2a-4=0 | | 3x+10+2x=50 | | -3(2x+6)=30 | | 108=4(-3-5r) | | x*0.3=42 | | 18–8m=-­4(5m+3)–3m | | 20t-8t=-52 | | 3x-24=-7x-4 | | 6(x-5)+2=44 | | F(x)=x^2+121 | | 7(9+k)=80+4=84 | | 3x+87=5 | | 18–8m=-­‐4(5m+3)–3m | | 5(1x-2)+10=5 | | 4x+1=2* | | -5x+12=57 | | 3(b+2)=b-18 | | 12x+4=6x+58 | | 3y+12=7y+8 | | 21.2=2/2x | | 6-x=8x-9x+3 | | x+51=-13 | | 64=-8+6x | | y2+8y+3=0 |

Equations solver categories