If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k2+3=51
We move all terms to the left:
k2+3-(51)=0
We add all the numbers together, and all the variables
k^2-48=0
a = 1; b = 0; c = -48;
Δ = b2-4ac
Δ = 02-4·1·(-48)
Δ = 192
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{192}=\sqrt{64*3}=\sqrt{64}*\sqrt{3}=8\sqrt{3}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{3}}{2*1}=\frac{0-8\sqrt{3}}{2} =-\frac{8\sqrt{3}}{2} =-4\sqrt{3} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{3}}{2*1}=\frac{0+8\sqrt{3}}{2} =\frac{8\sqrt{3}}{2} =4\sqrt{3} $
| 2x+3=2x-11 | | 10h-8h-h=15 | | 13(2)-12y=25 | | 2x+3=2x+-11 | | v+5v-v+3v=8 | | 2x+1=2x01 | | 7x–22=3x | | 2w-2w+2w=10 | | 0.5x-4.4=0.2(x+8) | | 4x=2×12 | | 5c+2c+3=10 | | q/6+ 46=50 | | 7l-16=5l | | -3(v+1)=21 | | -8x-60=4-10 | | −2p+22=10 | | u+u-2u+4u=12 | | d/13=52. | | g/2+17=28 | | 50=5(t+2) | | 5-4(x-3=x-2(x-1) | | X+10=5x-38 | | -3w/5=-15 | | d/13=5.2 | | -2-8x=-14-2x | | 11+2p=19 | | -25=5/4v | | -7y/2=-14 | | 1-x=x+2 | | 7n+8=5n-4 | | 1x-x=x+2 | | 9x/12=180 |