If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k2+1=6
We move all terms to the left:
k2+1-(6)=0
We add all the numbers together, and all the variables
k^2-5=0
a = 1; b = 0; c = -5;
Δ = b2-4ac
Δ = 02-4·1·(-5)
Δ = 20
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{20}=\sqrt{4*5}=\sqrt{4}*\sqrt{5}=2\sqrt{5}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{5}}{2*1}=\frac{0-2\sqrt{5}}{2} =-\frac{2\sqrt{5}}{2} =-\sqrt{5} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{5}}{2*1}=\frac{0+2\sqrt{5}}{2} =\frac{2\sqrt{5}}{2} =\sqrt{5} $
| 4d-11d+d+17d=-20 | | 16r-16r+2r-r=20 | | (x-6)(x=2) | | -5d+14d+-3d=-6 | | 10v−7v=12 | | 70=19/3x | | 6(4v+3)=72 | | 3w+4w+w-5w=15 | | 10t−2t=8 | | M-14m+19m+3m+-17m=16 | | j/4+55=64 | | j/4-–55=64 | | 2(s+11)=54 | | 450=x1000 | | 3g-28=23 | | 450=x10^3 | | 450=x100^3 | | 3g−28=23 | | g/7+16=20 | | 45x-120=6x | | t/2+20=25 | | 20x^2+29x–36=0 | | 1467=x=1653 | | 20x2+29x–36=0 | | 6+2u=16 | | J=3x-1 | | 7p+p+3p+p-6p=18 | | 7(3)^(x)=63 | | 6(x+6)-8x=20 | | d+35=165 | | 180-9x-92=5x+20 | | 2/5m+7=3 |