If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k+1/k=4k
We move all terms to the left:
k+1/k-(4k)=0
Domain of the equation: k!=0We add all the numbers together, and all the variables
k∈R
-3k+1/k=0
We multiply all the terms by the denominator
-3k*k+1=0
Wy multiply elements
-3k^2+1=0
a = -3; b = 0; c = +1;
Δ = b2-4ac
Δ = 02-4·(-3)·1
Δ = 12
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{12}=\sqrt{4*3}=\sqrt{4}*\sqrt{3}=2\sqrt{3}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{3}}{2*-3}=\frac{0-2\sqrt{3}}{-6} =-\frac{2\sqrt{3}}{-6} =-\frac{\sqrt{3}}{-3} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{3}}{2*-3}=\frac{0+2\sqrt{3}}{-6} =\frac{2\sqrt{3}}{-6} =\frac{\sqrt{3}}{-3} $
| 10-2e=8 | | 34-(x-5)=0 | | 4k(k+1/k)=0 | | 5(3x+5/2)=4x+7 | | b²+2b=-20 | | P(x)=x^2-4x+3 | | 2p/3-p/6=7/3 | | |2x-10|=26 | | (n^2)-7n-8=0 | | -9-4a=-53 | | 5{2m-6)=12 | | -(k^2)-3k-8=0 | | 3(b+5)=6 | | P^2-p=1 | | 2t-+7=-1 | | 11+-24=a | | 1x+8/9x=12 | | 11-24=a | | 8q+5=9q | | x(×+3)=28 | | -20-6=a | | -20+-6=a | | 1/x2+5x+5=1 | | 4-1=a | | 4+-1=a | | -15+6=a | | 3+-3=a | | x=25.7+1.2 | | 1x+5-3x-7-5x=5 | | (x+5)^2-2x+4=6-x+x^2 | | (k^2)+3k+8=0 | | 48+96+x=180 |