If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k+1/4k=15
We move all terms to the left:
k+1/4k-(15)=0
Domain of the equation: 4k!=0We multiply all the terms by the denominator
k!=0/4
k!=0
k∈R
k*4k-15*4k+1=0
Wy multiply elements
4k^2-60k+1=0
a = 4; b = -60; c = +1;
Δ = b2-4ac
Δ = -602-4·4·1
Δ = 3584
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3584}=\sqrt{256*14}=\sqrt{256}*\sqrt{14}=16\sqrt{14}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-60)-16\sqrt{14}}{2*4}=\frac{60-16\sqrt{14}}{8} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-60)+16\sqrt{14}}{2*4}=\frac{60+16\sqrt{14}}{8} $
| 2x+10-3x=9x+5 | | 9y+28=180 | | 4-5/3x=x/6 | | 4-5x/3=x/6 | | 4-13=x | | 1/2y-4y/3=10 | | 20-7y=16 | | 18=9×n | | 4x°2=16 | | 14m-9m+2=17 | | -3k+11k+(-6k)+4K+(-11k)=-20 | | 3x+7-x=-11 | | 5(6)-7y=16 | | 16q-10q+2q-6q=18 | | 180-(3x^2+7x+1)=0 | | 4v-4v+v=13 | | -9=-2+xx= | | a/5+4a/5=2 | | -24-14x=5(-3x-5) | | 14-10x=-3(3x-4) | | 12s-9s+2=20 | | T(4)=5n-3 | | 2(7x)=34+x+5 | | 2/3+216=x | | -2.75=1+w/3 | | -9(v+1)=5v+5 | | 2x+26=-9(x-9) | | -1=8x+3(x-4) | | 40+90+c=180 | | -8=3(w+2)+4w | | 5u+6(u-6)=-14 | | 5p+2p-8+4=3 |