If it's not what You are looking for type in the equation solver your own equation and let us solve it.
k*(k-10)=1
We move all terms to the left:
k*(k-10)-(1)=0
We multiply parentheses
k^2-10k-1=0
a = 1; b = -10; c = -1;
Δ = b2-4ac
Δ = -102-4·1·(-1)
Δ = 104
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{104}=\sqrt{4*26}=\sqrt{4}*\sqrt{26}=2\sqrt{26}$$k_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-10)-2\sqrt{26}}{2*1}=\frac{10-2\sqrt{26}}{2} $$k_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-10)+2\sqrt{26}}{2*1}=\frac{10+2\sqrt{26}}{2} $
| 9x-8x/8x=0 | | n-(-10)=7 | | 44/6k=66/66 | | j-20/10=48 | | 3*n+5=17 | | m/8-12=1 | | 100-s/2+8=56 | | 144-m=79 | | X-1=4x+x-4+3x | | x—36.5=2.563 | | 36x-20=-11+63 | | 5/3a+6=7/9 | | 3(4w+2)+3w=36 | | 12=-4+8y | | (x+9)(x-1)=(x+1)^2 | | 7n^2-12n+32=0 | | 7t-13=64 | | -11=n/21 | | 5/3x+21=73 | | 5t²-7t=60 | | 17+3k=-3+5(7k+4) | | x(7x-5)=7x+1)(x-2) | | -15+6x=3(x+3) | | -18=-6k=6(1+3k | | Z+z-2/2=4 | | 6x(2x+5)=11 | | 6x-(2×+5)=11 | | -3/5s=1/6 | | 3(2x+12)=-2(x-4 | | 4p-7(2+2p)=0 | | 5(x+2)=6x+3x−14 | | 5x/9=20/x |